

ENERGee Watch

Data display, dissemination and validation by local authorities

Matthieu Denoux, PhD Project Manager Auvergne Rhône-Alpes Energie Environnement

ENERGee Watch has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 752126.

Course structure – as per handbook

<u>Topic 1</u>: What determines effective communication of data?

Topic 2: Identifying the information needs of the end-users

Topic 3: Manipulating and presenting data

<u>Topic 4</u>: Implementing data display tools

Topic 5: TerriSTORY®, a deeper insight

Topic 6: Data dissemination

Q: *What does this topic evocate to you?*

Join by Web

1 Go to **PollEv.com**

2 Enter MATTHIEUDENOUX407

3 Respond to activity

What does this topic evocate to you?

communication understanding effective

ENERGee Watch

Topic 1: What determines effective communication of data?

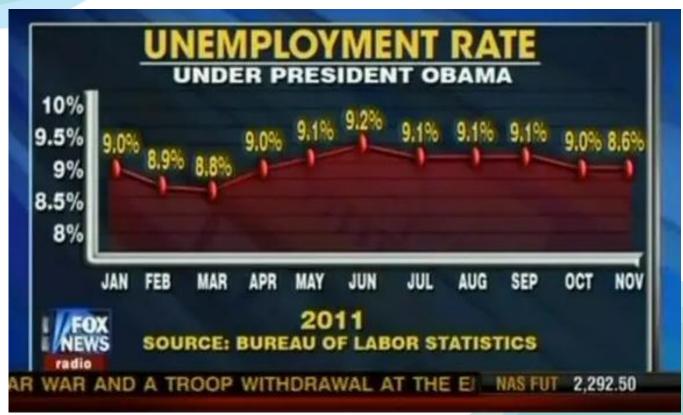
ENERGee Watch has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 752126.

What to consider before collecting and presenting data...

- The need for the data
- Accessibility of data sets
 - Free of charge or paid for?
 - Readily available or a lot of time required?
 - Publishable or private data?
- What other stakeholders are concerned by the data?
- Who is the target audience?
- Are there any data regulations in place?

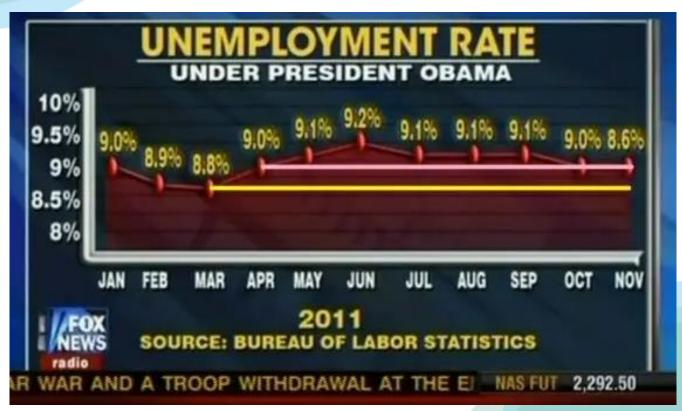
How do we ensure data is received effectively?

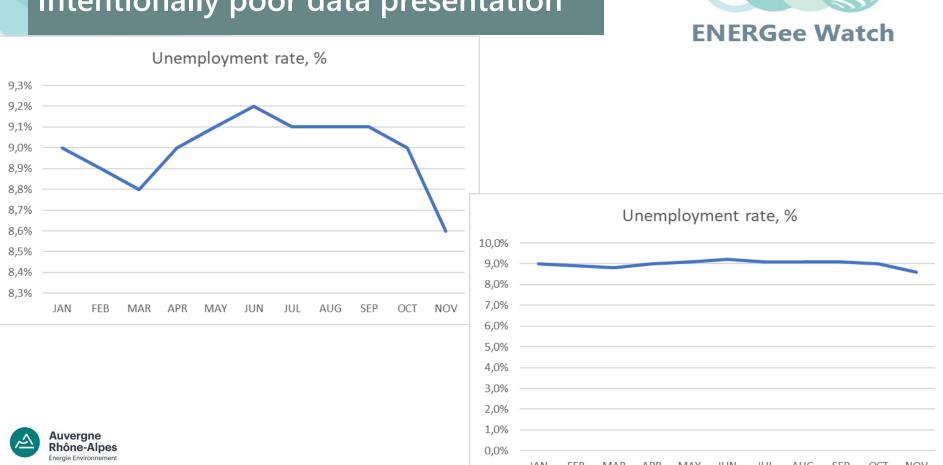
- There are many examples of how data can be poorly presented
 - Sometimes by accident, sometimes intentional
- Knowing the audience is key
 - intended for academics or experts? it may be *complex*
 - for general public? it must be clear and concise



Intentionally poor data presentation

Auvergne Rhône-Alpes Énergie Environnement


ENERGee Watch



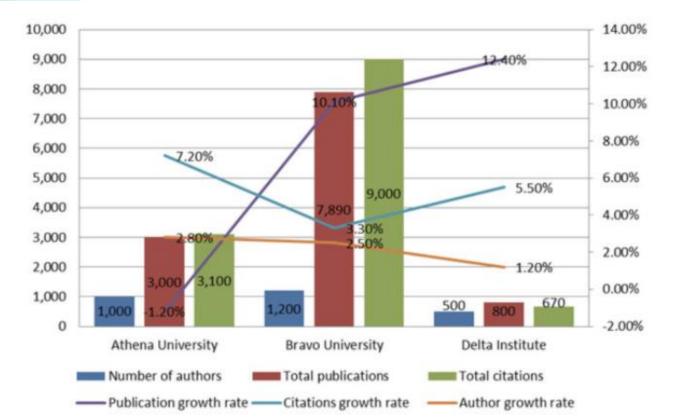
Intentionally poor data presentation

ENERGee Watch

Intentionally poor data presentation

Bad examples of data visualisation

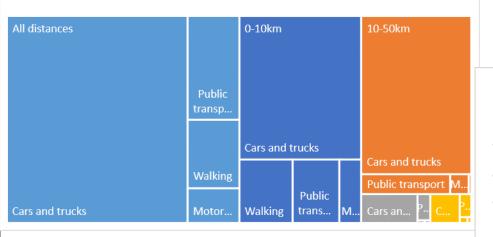
Auvergne

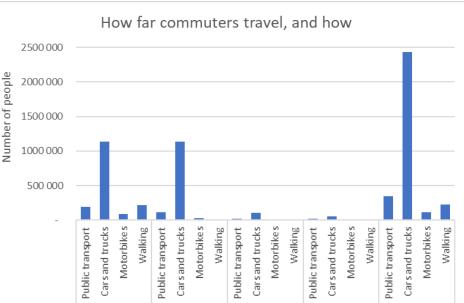

Rhône-Alpes

Énergie Environnement

 $\underline{\wedge}$

ENERGee Watch


11


Other examples of data visualisation

How far commuters travel and how

■ 0-10km ■ 10-50km ■ 50-100km ■ > 100km ■ All distances

ENERGee Watch

Topic 2: Identifying the information needs of the end-users

ENERGee Watch has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 752126.

Definitions

- **Stakeholder**: anyone, or organisation, concerned by, invested in or impacted by the collection, processing or distribution of information ex: energy companies, city or region employees or representative...
- End-user: anyone, or organisation, that finds a use for the information produced and communicated (and who are not *necessarily specialists* in the subject)
- As a project is planned or launched, the identification of stakeholders and end-users should be a priority (like when starting a business)

What information is important?

Identifying end-users

- To whom regulations/political objectives apply
- Questionnaires + Surveys + Meetings
- Who are the instigators of projects?
- Other existing projects

Identifying why they need the information

- International objectives (e.g. SECAP / PCAET)
- National/Local initiatives (TEPOS-CV in AURA)
- Planned or ongoing projects
- In AURA: Lots of data solicitations, helps us identify needs

Any examples? (Top-down or bottom-up)

In AURA, 2013, **climate objectives** were introduced by the region, requiring the regional government to **track progress** among territories.

Multiple actors involved to **identify key climate indicators** (*Tourism, Agriculture and Water*) importance to the region (those most at risk economically)

Identified the **contributors** to create these indicators through a working group

In total, this project took around a year

Started out with a large seminar:

- 15 organisations, across different sectors
 - Local government, associations, tourism agencies, climatologists etc.
- Multiple problems identified and discussed in these sectors
- Followed the "Impact Chain" method of identifying climate risks*

Once all potential issues were identified, followed a 2nd working group which

- Identified impacts of each issue
- Determined the priority (1-5) for each actor and territory involved
- Identified the <u>availability of data</u>

3rd working group:

- · Cross-theme discussions to ensure the indicators identified were useful
- Produced the most important indicators with available data
 - Making sure to define them well (e.g. average temperature change),
- 4th working group:
- Validation of indicators
- Development of analysis reports for each indicator for different types of territory
 - Mountainous
 - Agriculture
 - Vineyards
 - On the coast (not applicable in AURA)

Working groups each year to update and add any further indicators

2 years later, went to see the territories to see how indicators were used Feedback :

• "Useful, but too difficult to find relevant information for my territory"

Decided to create territory specific analysis reports on the indicators that concerned each territory

Has been a great success, reports now automated, many more indicators for a more complete analysis

All thanks to many years of work, and most of all, listening

A more concrete example...

Mobility indicators :

- Many data
- What are the needs from the territories?
 - . Accessibility to services and jobs!
- Work has been done (RESILITERRE project)
- Discussions with territories
- Working group on mobility (still meeting to this day!)

A more concrete example...

Simulateur d'impacts mobilité

Objectif : donner les ordres de grandeur d'impacts associés aux principaux leviers de la mobilité

- 🔽 Leviers pour « moins se déplacer » 💍
- * Leviers de réduction trajets domicile-travail

Réduire le nombre d'actifs devant se déplacer ?

📃 Réduire le nombre de km parcourus par trajet 👩

Leviers de réduction – déplacements personnels hors travail

Réduire le nombre de km à parcourir pour accéder aux services & loisirs 👩

Leviers de réduction – transport de marchandise

✓ Impact énergétique - transport routier (en GWh) :

^{14°} putier (en k€) :	-5.6 14845 106
tour au tableau de bord Mobilité	
	outier (en k€) :

📄 Réduire le nombre de km pour le transport de marchandise 👩

Just to conclude this quick section

Importance of partnership:

- Find the most inspiring partners
- Find the right databases or data sources
- Find the most passionate and voluntary end-users

ENERGee Watch

Topic 3: Data manipulation and presentation in an effective manner

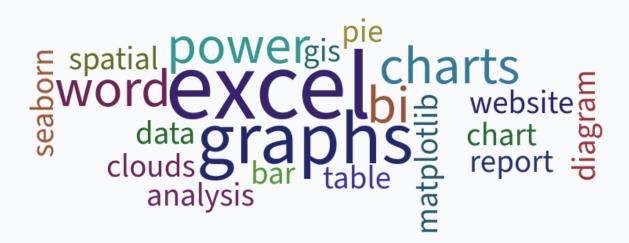
Q: Which data representation forms do you mainly use?

Join by Web



1 Go to PollEv.com

2 Enter MATTHIEUDENOUX407

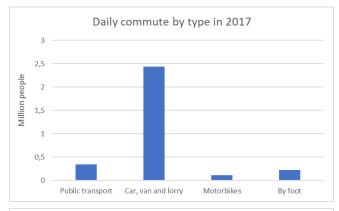


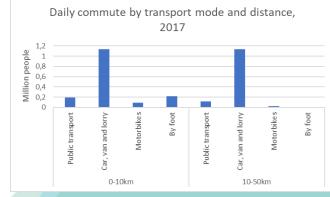
3 Respond to activity

Which data representation forms do you mainly use?

Different modes of presenting information

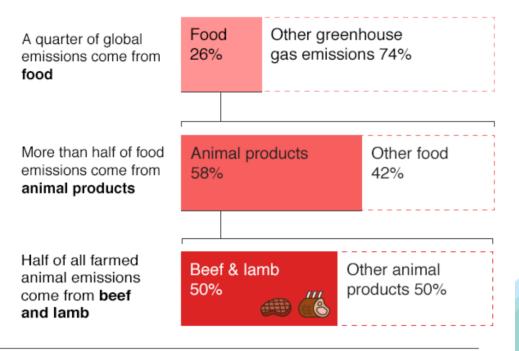
ENERGee Watch


- Simple charts
- Pie, area and volume charts
- Combined charts
- Interactive charts
- Data points & data tables
- Sankey diagrams
- Static data mapping
- Dynamic time series data
- Textual representations



Simple charts

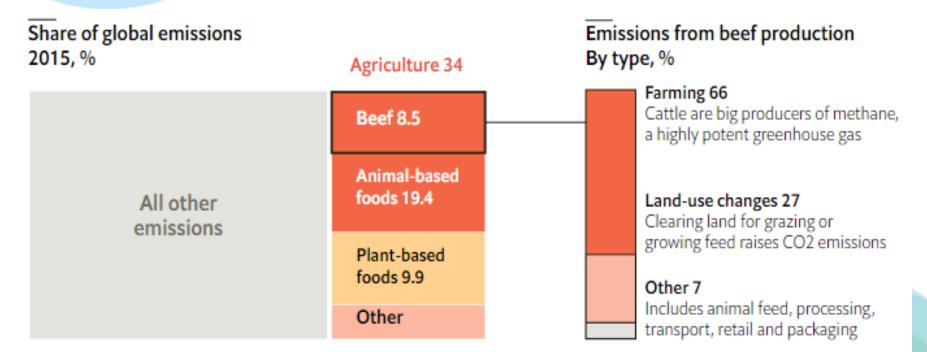
- Bar, line, scatter
- Normally require simple datasets
- For presenting linear trends of few criteria
- + Easy to understand
- + Easy to implement
- + Don't require much expertise
- Can oversimplify complex messages
- Don't provide much analysis



Taking an example...

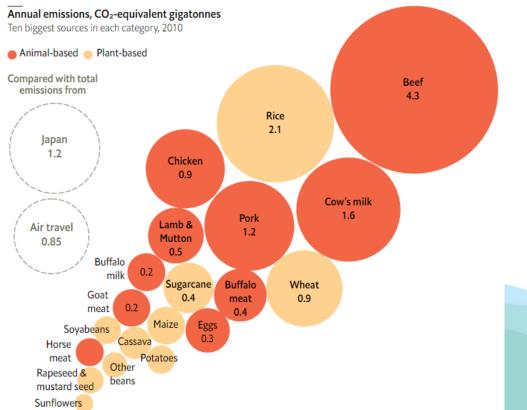
How much impact does food have?

Proportion of total greenhouse gas emissions from food



Source: Poore & Nemecek (2018), Science

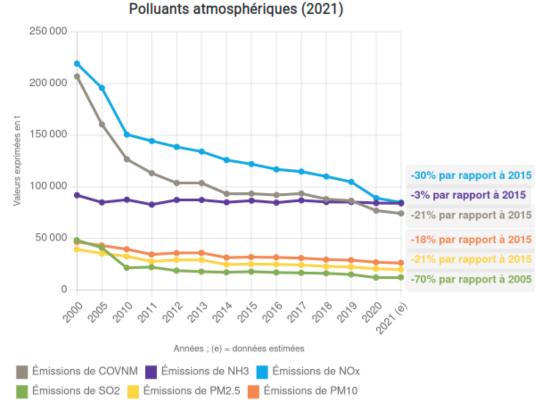
Adding important detail...



Source: The Economist, "Treating beef like coal would make a big dent in greenhouse-gas emissions"

Making it more impactful...

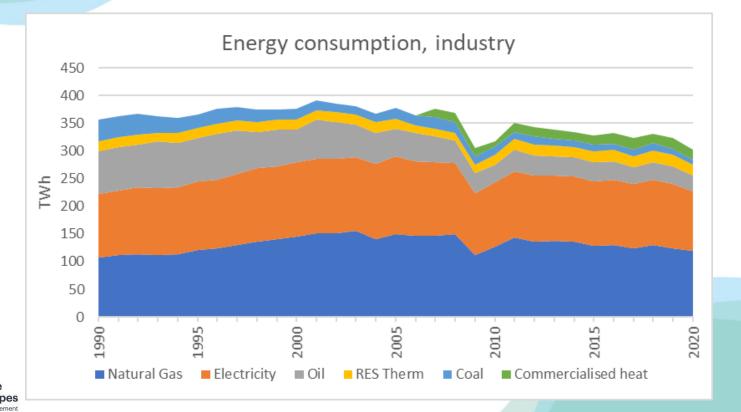
ENERGee Watch



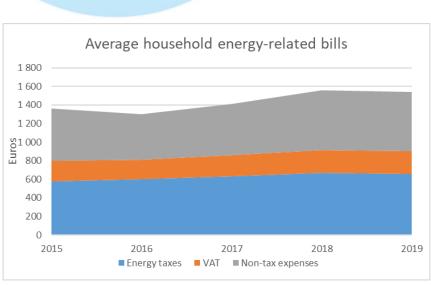
Source: The Economist, "Treating beef like coal would make a big dent in greenhouse-gas emissions"

Auvergne Rhône-Alpes Énergie Environnement

Making it more impactful...

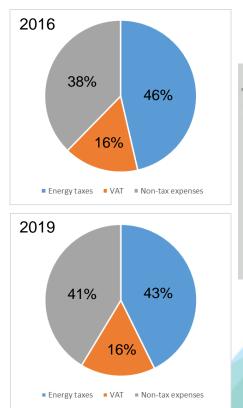


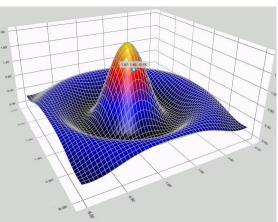
- Used when trying to present inter-related data
- Presents multiple data points in a simple manner
- 3D charts used when three criteria are plotted together
- + Clear and easy to understand
- + Don't require much expertise, except 3D
- Can be poorly presented
- Not easy to extract analysis/meaning



33

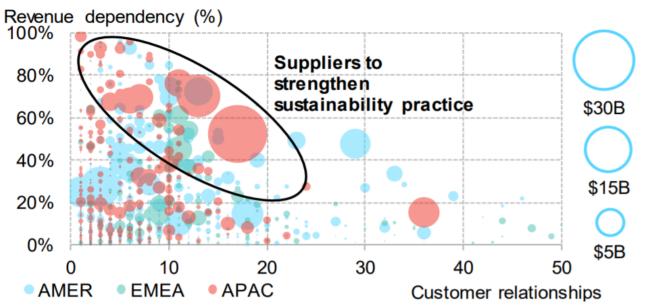
ENERGee Watch




Interesting reading

Auvergne

Rhône-Alpes

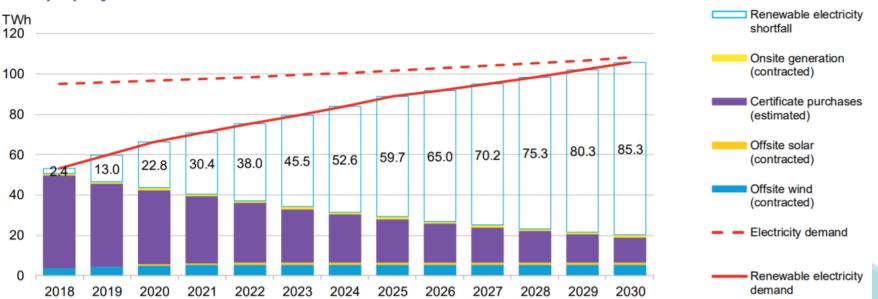

"Save the pies for dessert", Stephen Few: http://www.perceptualedge.com/articles/08-21-07.pdf

Global Supplier exposure, by revenue dependency (y-axis), number of customer relationships (xaxis) and absolute revenues (bubble size)

Source: BloombergNEF, Bloomberg Terminal Note: Chart is based on Bloomberg's SPLC function, and includes tier 1 suppliers only.

Combined + interactive charts

- Comprising of multiple datasets
- For presenting the relationships between different sets of information in a clear fashion
- + Information presents a clear message without need of explanation
- + Accessible and simple to understand
- Requires a good understanding of the data

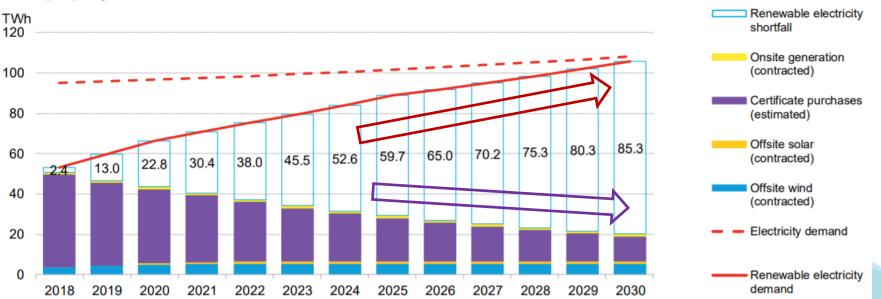


Example of a combined chart

ENERGee Watch

Legend

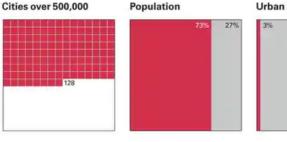
Source: BloombergNEF, The Climate Group, company sustainability reports Note: Certificate purchases are assumed to step down 10% each year. Onsite generation and contracted wind and solar purchases remain flat through 2030. Regional breakdown of shortfall estimated based on each company's share of revenue by region. Electricity demand and renewable electricity demand don't intersect in 2030, as some companies have targets extending out past 2030


Europe projected renewable shortfall for RE100 members

Example of a combined chart

ENERGee Watch

Legend



Source: BloombergNEF, The Climate Group, company sustainability reports Note: Certificate purchases are assumed to step down 10% each year. Onsite generation and contracted wind and solar purchases remain flat through 2030. Regional breakdown of shortfall estimated based on each company's share of revenue by region. Electricity demand and renewable electricity demand don't intersect in 2030, as some companies have targets extending out past 2030

Europe projected renewable shortfall for RE100 members

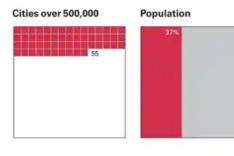
Example of a combined chart

EUROPE

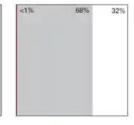
27%	3%	64%	33%

INDIA

Cities over 500,000 67


Population						
	32%	1				

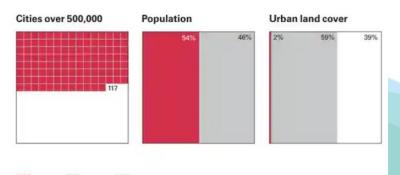
68%



SUB-SAHARAN AFRICA

Urban land cover

63%



CHINA

Urban

Rural

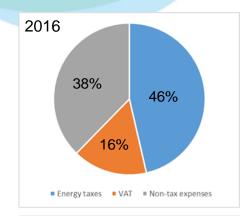
Other

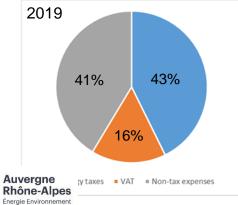
Data points + tables

- For when a chart is not necessary
- When only a couple of datapoints are important
- + Clear and to the point
- + Easy to implement
- Can become boring
- Difficult to communicate a complex message

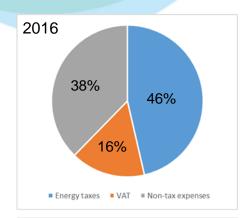
+22%

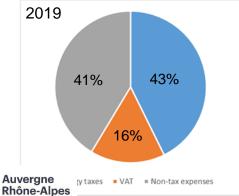
Increase in residential gas consumption in AURA, 2005-2018


46km


Average commute by car or van in 2017 in AuRA

When to use a data table...

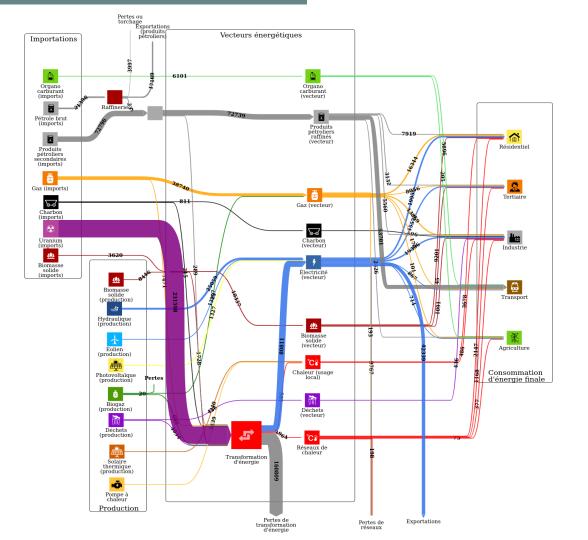




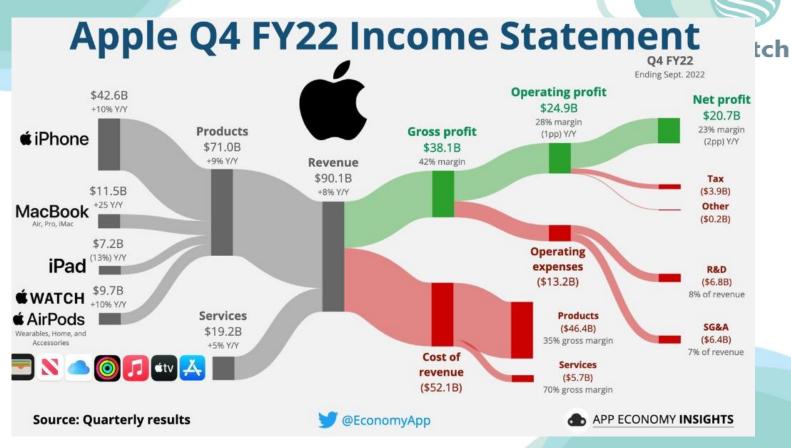
When to use a data table...

Énergie Environnement

	20)16	2019		
Energy Taxes	3,6	46%	3,9	43%	
VAT	1,2	16%	1,4	16%	
Non-tax expenses	2,9	38%	3,2	41%	
Total	7,6	100%	8,5	100%	


- To present the flow of data from one point to another
- Used to present a system, with lots of information
- + Easy to visualise an entire system in one go
- + Represents vast amounts of data
- + Attractive to the eye
- Complex to create and read
- Can lack detail/precision
- Time consuming process

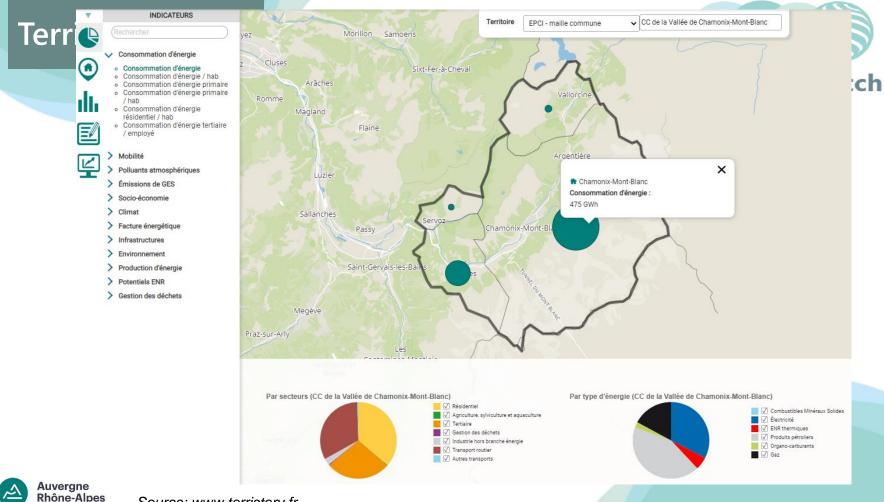
Sankey diagram – Au


https://tinyurl.com/auraSankeyEnergy

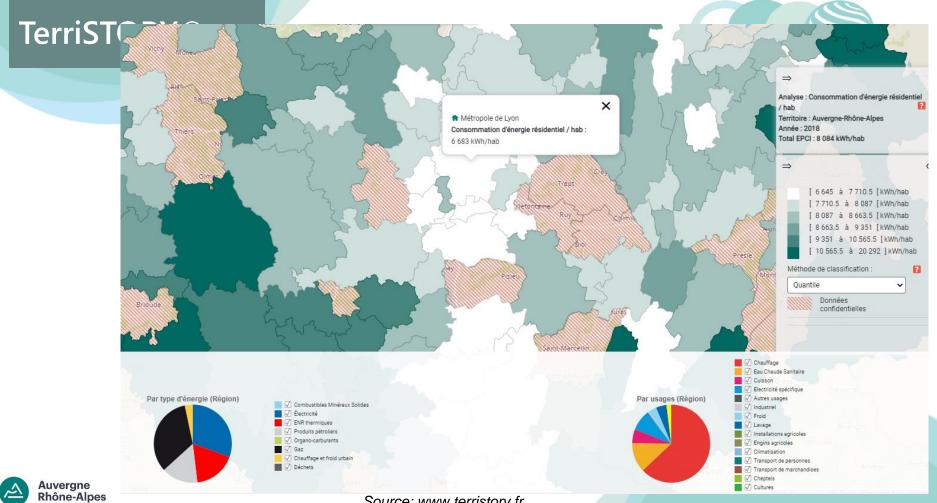
or

https://tinyurl.com/auraSankeyBiogaz

Sankey diagram – Company Income Statements



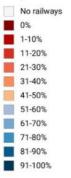
Static data mapping


- Translating data onto a map
- To visualise data geographically
- Complex messages portrayed relative to a location
- + Useful in comparing different locations
- + Visually easy to understand
- Requires a lot of development
- Takes a lot of time and effort to produce

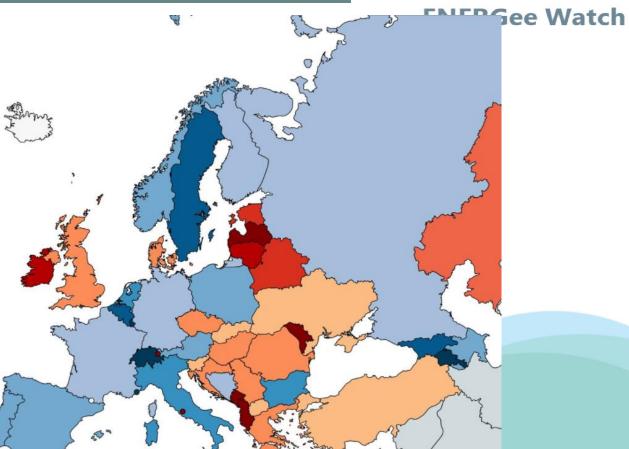
Source: www.terristory.fr

Énergie Environnement

47


Source: www.terristory.fr

Énergie Environnement

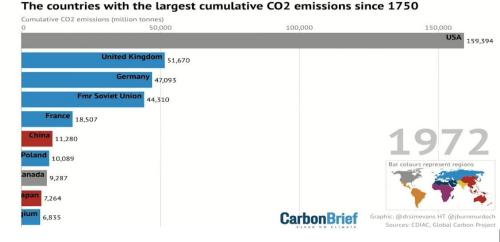

Another example of clear data mapping

Percentage of electrified rail network over total network length

Auvergne Rhône-Alpes

Dynamic time-series data

- To understand how a data point or series has developed over time
- Specific focus on one or two datapoints
- + Shows a clear and definitive message
- + Interesting to the observer
- Difficult to implement
- Lots of time and effort required



Time-series data examples

ENERGee Watch

- "Which countries have emitted the most CO2?", Carbon Brief <u>https://www.youtube.com/watch?v=jx8</u> <u>5qK1ztAc</u>
- "Google Timelapse: Urban Explosion | TIME"
- https://www.youtube.com/watch?v=Aq USo2hstHI

Textual representation of information

- For when a chart is not necessary
- When data is either not available or not applicable
- Allows a better explanation of trends
- + Accessible to a large audience
- + Provides much more information
- Takes time to develop (as discussed in Topic 2)
- Requires a better knowledge of the audience

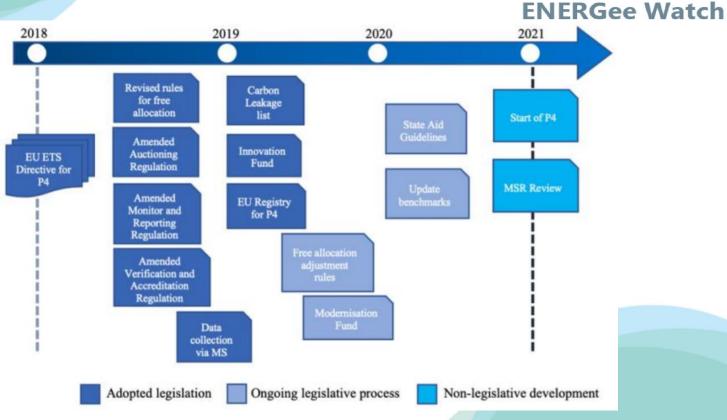
Examples of textual representation

- Tables (see examples)
- Newsletters
- Leaflets
- Executive summaries
- Short bulletins
- Emails
- Long-form reports

Example of textual representation

ENERGee Watch

l'ableau de synthese										
Thème	N°	Indicateur	Unite	Valeur territoire	Valeur normalisée	Médiane (EPCI)	Valeur normalisée médiane	Minimum (EPCI)	Maximum (EPCI)	Année de la donnée
A - Territoire et environnement	A1.6	Stocks de carbone	teqCO2 / ha	215	3.61	225.5	3.83	41	282	2018
A - Territoire et environnement	A3.1	Part d'espaces naturels	%	35	1.8	41	2.11	0	97	2018
A - Territoire et environnement	A8.1	Émissions GES / hab	teqCO2 / hab	5.67	4.51	5.8	4.49	1.83	40.88	2021 (e)
A - Territoire et environnement	A8.3	Émissions GES tertiaire / employé	teqCO2 / employé	1.76	3.9	1.42	4.12	0.02	7.94	2021 (e)
A - Territoire et environnement	A8.4	Émissions GES résidentiel / hab	teqCO2 / hab	0.81	4.44	0.94	4.1	0.6	2.48	2021 (e)
B - Énergie / Consommation de ressources	B1.1	Consommation d'énergie / hab	kWh / hab	27 071	4.68	24 793	4.73	11 128	259 708	2021 (e)
B - Énergie / Consommation de ressources	B1.2	Consommation d'énergie tertiaire / employé	kWh / employé	12 010	4.49	12 575	4.46	316	114 203	2021 (e)
B - Énergie / Consommation de ressources	B1.20	Part EnR/Consommation d'énergie	%	59.1	0.53	17.51	0.13	3.65	529.69	2021 (e)
B - Énergie / Consommation de ressources	B1.3	Consommation d'énergie résidentiel / hab	kWh / hab	7 300	4.56	8 346	4.16	6 128	19 380	2021 (e)

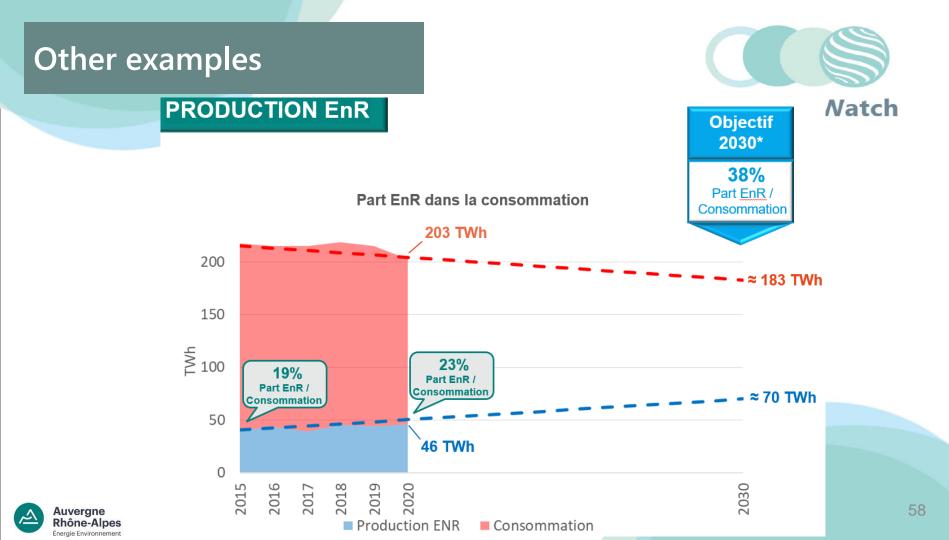

Tableau de cynthèse

Source : TerriSTORY® /

https://auvergnerhonealpes.terristory.fr/notes?zone=epci&maille=commune&zone_id=200073096&nom_territoire=CA%20Arche%20Agglo

Example of textual representation

- Each of these options require manipulation of data, some more than others
- With raw data it can be **difficult to identify the trends**
- Having to filter out unnecessary data
- For most types of charts, **excel** can be used to implement these
 - For a lot of others, **specific software or programming** is required
- For example, TerriSTORY[®] utilises a lot (a LOT) of code
- The Sankey diagrams use an external Open-Sankey library



- Presenting data to regional authorities:
 - Clear and simple
 - Get the message across
 - Make the link with objectives

Other examples

Quantités de déchets ménagers et assimilés (DMA¹) collectés par habitant

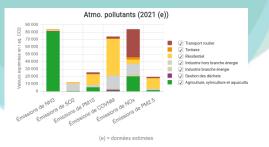
tch

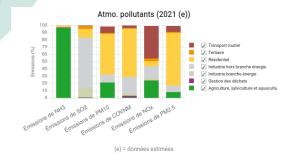
Prévention : réduction des tonnages de DMA collectés par habitant

Réduction de la quantité de DNDNI³ enfouis

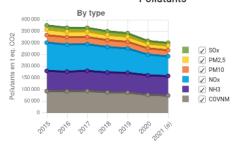
- Many forms of representation at your fingertips
- Some are quick and simple (most common)
- Some take more time, but the effect is larger

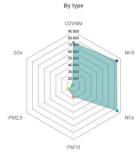
Q: Let's ask you how you feel about all these representations!


Join by Web



3 Respond to activity

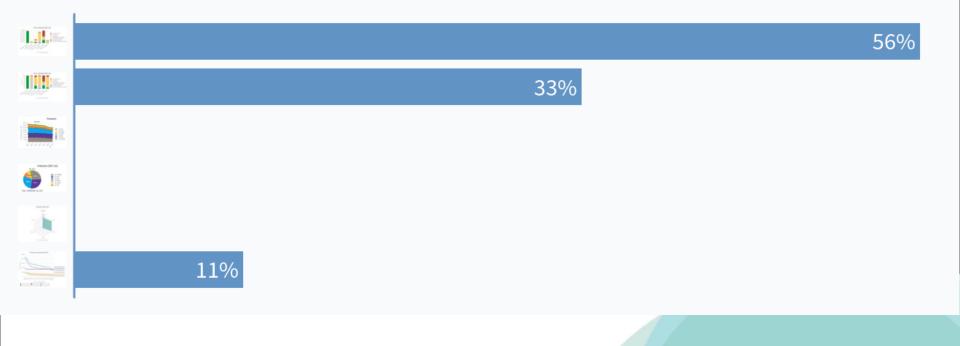




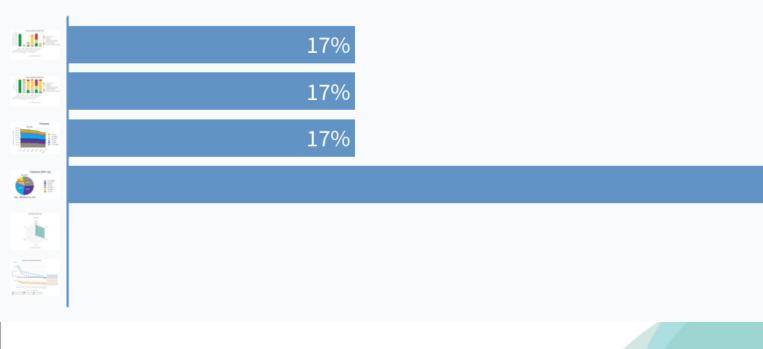
ENERGee Watch

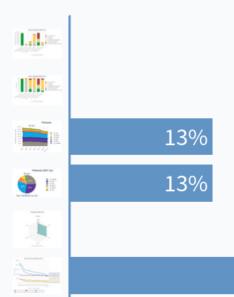
Pollutants

Pollutants (2021 (e))


Pollutants (2021 (e)) By type COVNM 6.6% 🖌 NH3 🖉 NOx PM10 27.9% PM2,5 🖉 SOx Total : 300 865,49 t eq. CO2

Polluants atmosphériques (2021) 250 000 200 000 150 000 -30% par rapport à 2015 100 000 -3% par rapport à 2015 -21% par rapport à 2015 50 000 -18% par rapport à 2015 -70% par rapport à 2005 200 200 200 2010 201 Années ; (e) = données estimées Émissions de COVNM Émissions de NH3 Émissions de NOx Émissions de SO2 Émissions de PM2.5 Émissions de PM10


What is the best representation to determine which sector has the greatest impact in terms of air pollutants?


50%

What is the best representation to determine which pollutant has the highest emission level?

What is the best representation to determine historical evolution for air pollutants

ENERGee Watch

Topic 4: Implementing data display tools

ENERGee Watch has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 752126.

Areas to be covered...

Within AURA-EE, we produce a variety of display options across different sources:

- Data centre (observatory)
 - Data
 - Publications
- Various maps
- Sankey diagrams + how to implement them
- TerriSTORY®
 - External stakeholder validation

Creating graphs

Regional Climate Air and Energy Observatory (data centre)

- Lots and lots of data and information available
 - See key figures document <u>here</u>
- Most of the information available in **two forms**
 - Simple graphs
 - Data tables for more detail
- Also offer regional level maps for mapping different data
 - Temperature differences
 - Renewable energy potentials

ORCAE – Making graphs more interesting

- Most graphs are developed using excel
- Some exceptions, integrating our communications team to make the graphs look more interesting
 - Here are some examples...

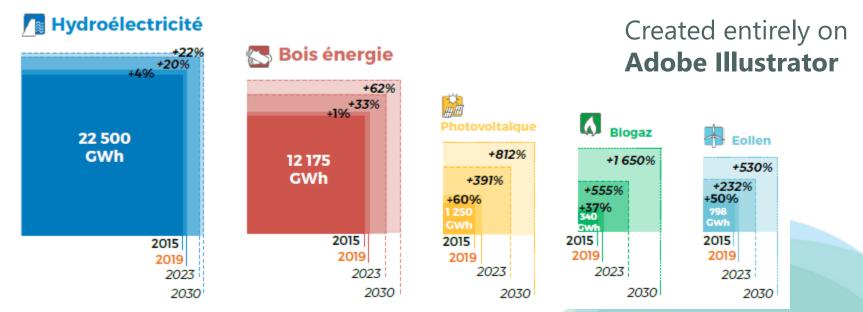
ORCAE – Making graphs more interesting

Part des secteurs dans les émissions en 2019

Created using **Excel**, made more attractive using **Adobe Illustrator**

Sources des émissions de GES en 2019

Évolution émissions de GES par habitant


ORCAE – Making graphs more interesting

ENERGee Watch

Évolution de la production d'énergie renouvelable

par rapport aux objectifs SRADDET 2023 et 2030

Source: https://www.orcae-auvergne-rhone-alpes.fr/

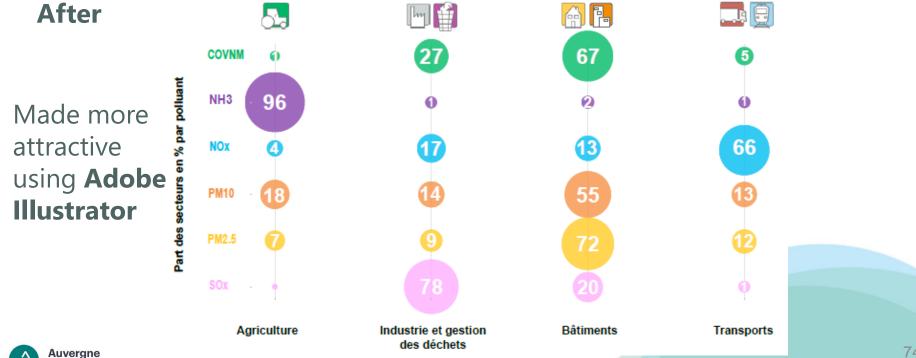
ORCAE – Making graphs more interesting

Source: https://www.orcae-auvergne-rhone-alpes.fr/

Rhône-Alpes

Énergie Environnement

ENERGee Watch



ORCAE – Making graphs more interesting

e Watch

Émissions de polluants atmosphériques par secteur en 2019

Source: https://www.orcae-auvergne-rhone-alpes.fr/

Rhône-Alpes

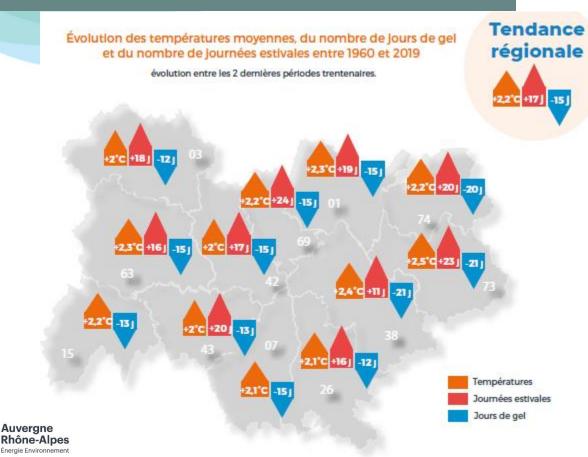
Énergie Environnement

Creating maps

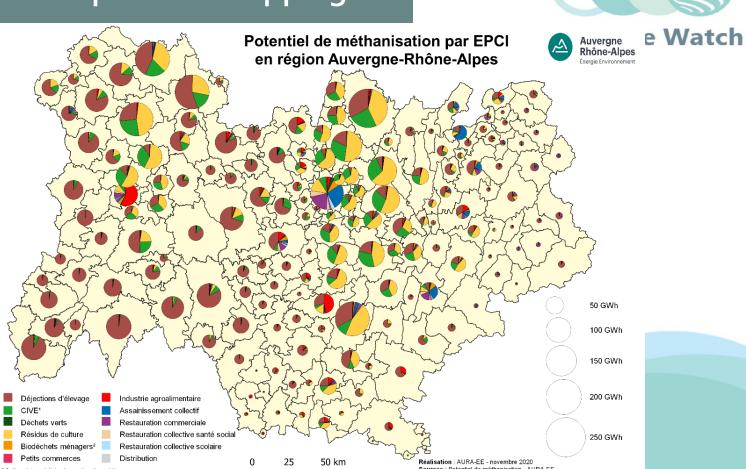
ORCAE – Regional-level maps

- Also offer regional level maps for mapping different data
 - Temperature differences, days of frost, days of excessive heat, harvest date, rainfall, etc.
 - Renewable energy potentials
- Created using <u>QGIS</u>, an free, open-source data mapping tool
 - This tool requires multiple levels of data
 - Firstly a map (AURA IGN 2018)
 - Then the data you wish to overlay

Creating maps using QGIS...


- **ENERGee Watch**
- Multiple indicators to be overlayed onto the map (first slide)
 - Different indicator for each department/county
 - Not a lot of detail required for them to be overlayed
- Biogas potential in each territory (second slide)
 - Overall biogas potential from multiple sources
 - Breakdown by type of use
 - In the correct format to be integrated into QGIS (.csv)
- Wind capacity potential across the whole region (third slide)
 - Lots more detailed data required on a much finer level

ORCAE – Example data mapping

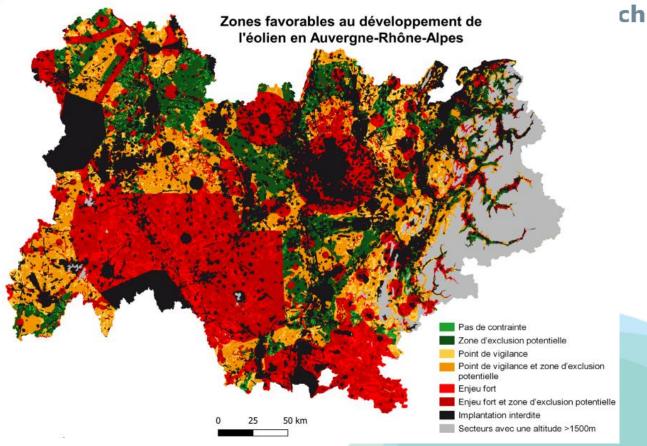


departments represented

ORCAE – Example data mapping

Auvergne Rhône-Alpes Énergie Environnement

ORCAE – Example data mapping


Much more complex data mapping

Mapped by <u>hectare</u>

Auvergne

Rhône-Alpes

Énergie Environnement

80

Creating a Sankey (or flow) diagram

Creating a Sankey (or flow) diagram

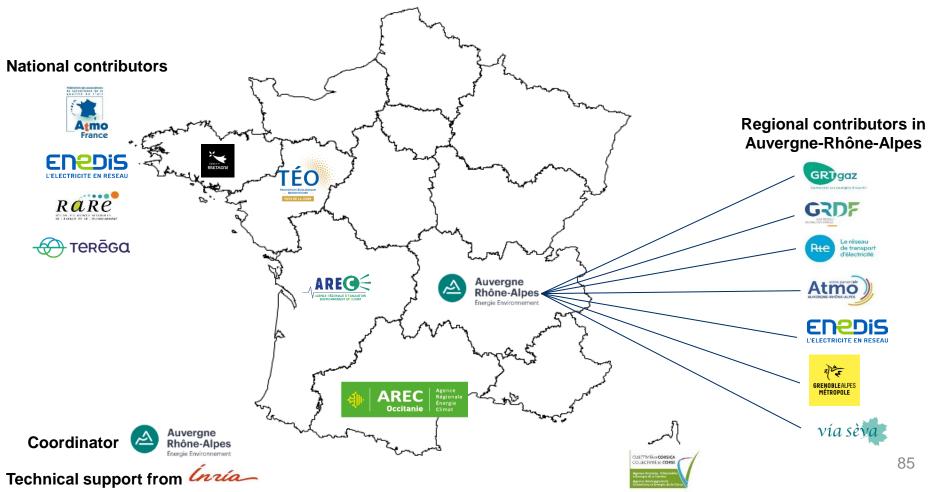
ENERGee Watch

- Three types of information are required to create a Sankey diagram:
 - A **Source**: from where the data comes from
 - A **Destination**: where the data point finishes
 - The "Weight": the value of such data
- Sankey diagrams can be as simple or as complex as you wish them to be depending on the audience and the data available
- We use the *e!Sankey* software (<u>introduction video</u>, <u>support videos</u>) or **Open-Sankey** library (<u>see here</u>)

ENERGee Watch

Topic 5: TerriSTORY® An online tool to accompany territories with their energy objectives

ENERGee Watch has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 752126.



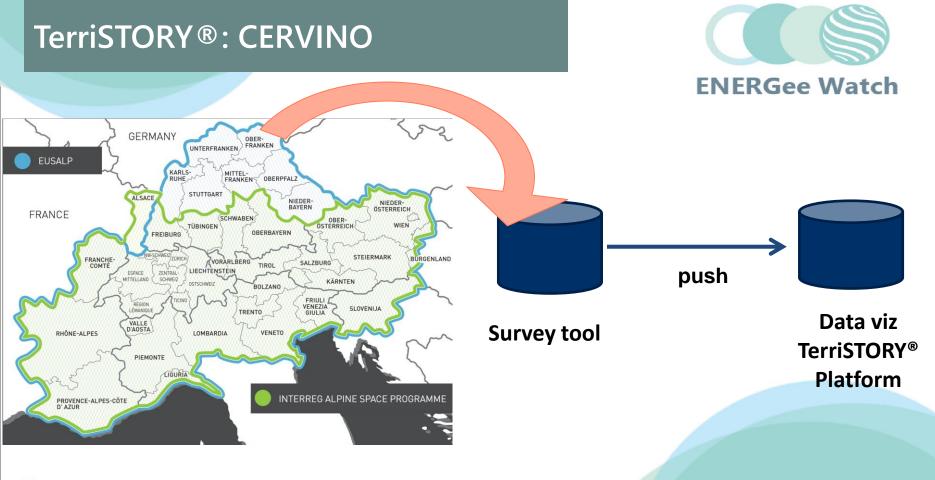
https://www.youtube.com/watch?v=4q8WzP4MAek

TerriSTORY

TerriSTORY® Partners (May 2023)

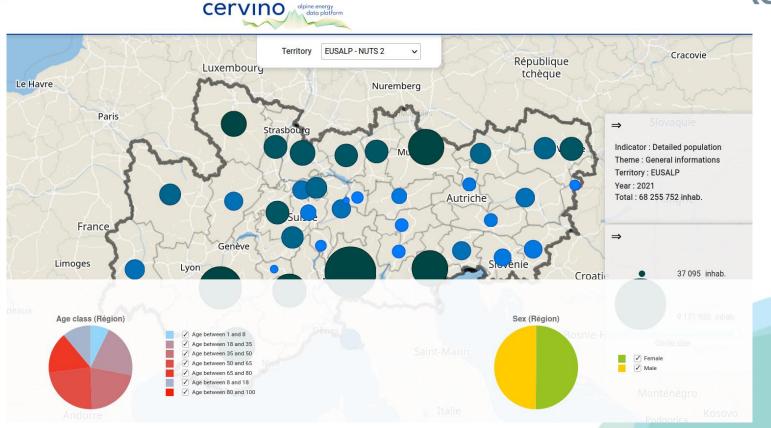
TerriSTORY®: Governance

ENERGee Watch


- TerriSTORY[®] is a project co-constructed with the local territories
- A multi-level governance system is in place:
 - National project consortium for global strategic direction (since 2020)
 - National pilot committee governs overall developments
 - Annual budget, partner organisations, intellectual property
- Regional pilot committees govern localised developments
- Project partners may also contribute on their own accord

TerriSTORY®: Governance

- As the project develops, we are continually searching for additional sources of development and financing
- This includes:
 - Developing other French regions
 - Private companies requesting specific capabilities
 - Calls for European projects



Auvergne Rhône-Alpes

TerriSTORY®: CERVINO

FNFRGee Watch

TerriSTORY[®]: Going beyond data

Simulateur d'impacts mobilité

Objectif : donner les ordres de grandeur d'impacts associés aux principaux leviers de la mobilité

- ✓ Leviers pour « moins se déplacer »
- ♦ Leviers de réduction trajets domicile-travail

Réduire le nombre d'actifs devant se déplacer

 2446860
 3033656

🔲 Réduire le nombre de km parcourus par trajet 👩

Leviers de réduction – déplacements personnels hors travail

🛛 Réduire le nombre de km à parcourir pour accéder aux services & loisirs 👩

Leviers de réduction – transport de marchandise

🗌 Réduire le nombre de km pour le transport de marchandise 👩

✓ Impact énergétique - transport routier (en GWh) :

0	61797	-5.3%
Impact carbone - transport routier (en ktCO2e) :	58545	
		-5.0%
 Impact facture énergétique - transport routier (en k€) : 	14845 1 4106	
impact lacture energenque - transport routier (en kc).		
Prêt pour construire votre plan d'actions « mobilité » ?		

Budget 2022: approximately €300,000

Time spent 2022: 850 days across 13 employees

Available in **6** French regions Soon in **38 alpine regions across** 7 countries!

TerriSTORY®: Future developments

TerriSTORY[®] is in constant evolution:

- An innovative analysis dashboard to track progress
- New indicators to present new data sets, such as mobility indicators
- Visualisation of energy flows
- Simulating mobility actions

With increasing popularity, the coverage area is growing

TerriSTORY® is **Open-Source** on gitlab.com/terristory/terristory/

• Allowing users to contribute to the improvement of the tool

ENERGee Watch

Topic 6: Data dissemination

ENERGee Watch has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 752126.

Q: When speaking of data dissemination, what are the main issues/drawbacks/points to watch/blocking factors according to you?

Join by Web

Go to PollEv.com

Enter MATTHIEUDENOUX407

3 Respond to activity

94

When speaking of data dissemination, what are the main issues/drawbacks/points to watch/blocking factors according to you?

lack electrical data management company availability several sharing requesting format complexity disseminate methodologyy hypothesis

An introduction

ENERGee Watch

We have spent the last hours looking at:

- how to analyse needs of users and stakeholders
- how to present data well (...and badly)
- some key example from our agency
- and now, how to best communicate this information most effectively

Data dissemination/communication

- Amount of effort put into displaying information is wasted if not communicated well
- Intended to inform and also <u>encourage inquiry and debate</u>
- There is not one best method for communicating information, each is tailor-made for the recipient

Data dissemination/communication

Before going into detail:

- At AURA-EE we wish to distribute information
- This information is then digested and reused by the reader
- If the end-user doesn't understand it well, they can't use it for their own purposes
- Which is one key purpose of an energy agency

Types of data dissemination

- Emails
- Newsletters
- Social Media
- Radio + TV + Newspaper
- Executive Summaries
- Phone calls + SMS

- Long-form Reports
- Websites
- Presentations/webinars
- Datasets
- Workshops
- Paid advertising

Choosing a mode of communication

ENERGee Watch

When deciding which type of data dissemination, multiple criteria need to be taken into account, for example:

- Timeframe
- Budget
- Knowledge/expertise
- Needs of the end-user
- Replication requirements

Sometimes, data is not enough!

- Applications/API/Website (e.g. TerriSTORY®)
- Events (meeting end-users)
- Serious games (e.g. <u>ClimaSTORY</u>)
- Research

- Difficult to understand
- Always hypotheses/choices leading to differences with other tools
- Never enough!

But hopefully, it will work!

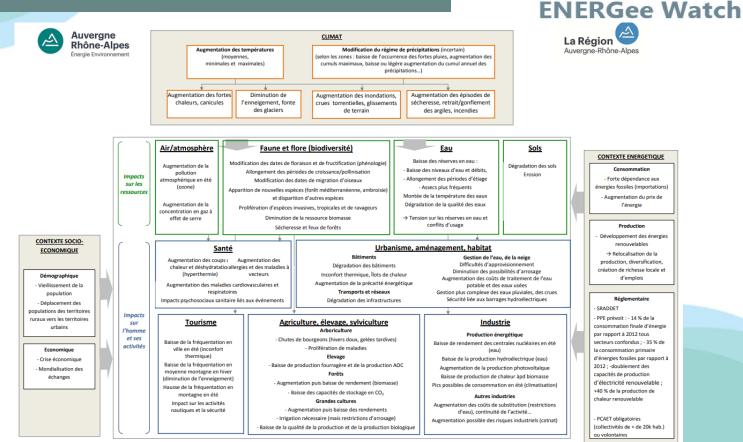
Some recent feedbacks on TerriSTORY®

"I find the tool extra, easy to use and the graphic representation very didactic; useful for us and for our elected representatives."

"I was absolutely blown away by the TerriStory tool."

Thank you!

Matthieu Denoux, PhD TerriSTORY® Project Manager Auvergne Rhône-Alpes Énergie Environnement matthieu.denoux@auvergnerhonealpes-ee.fr



ENERGee Watch has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 752126.

Appendix

"Impact Chain"

